This is a list of suggested references for Art and Interaction Computing at the ANU.
Boden, M. A. (2015).
Creativity and ALife.
Artificial Life,
21(3), 354–365.
https://doi.org/10.1162/ARTL_a_00176
Candy, L., & Ferguson, S. (2014).
Interactive experience in the digital age: Evaluating new art practice (L. Candy & S. Ferguson, Eds.). Springer International Publishing.
https://doi.org/10.1007/978-3-319-04510-8
Carr, C. J., & Zukowski, Z. (2018).
Generating albums with SampleRNN to imitate metal, rock, and punk bands (Vol. abs/1811.06633). arXiV Preprint.
http://arxiv.org/abs/1811.06633
Edmonds, E. (2010). The art of interaction.
Digital Creativity,
21(4), 257–264.
https://doi.org/10.1080/14626268.2010.556347
Edmonds, E. (2018).
The art of interaction: What HCI can learn from interactive art. Morgan & Claypool Publishers.
https://doi.org/10.2200/S00825ED1V01Y201802HCI039
Eldridge, A., & Kiefer, C. (2018).
Toward a Synthetic Acoustic Ecology: Sonically Situated, Evolutionary Agent Based Models of the Acoustic Niche Hypothesis: Vols. ALIFE 2018: The 2018 Conference on Artificial Life (pp. 296–303).
https://doi.org/10.1162/isal_a_00059
Fels, S., & Mase, K. (1999). Iamascope: A graphical musical instrument.
Computers & Graphics,
23(2), 277–286. https://doi.org/
https://doi.org/10.1016/S0097-8493(99)00037-0
Gaver, W. W. (1991). Technology affordances.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 79–84.
https://doi.org/10.1145/108844.108856
Gonzalez Sanchez, V. E., Zelechowska, A., Martin, C. P., Johnson, V., Bjerkestrand, K. A. V., & Jensenius, A. R. (2018, June). Bela-based augmented acoustic guitars for inverse sonic microinteraction.
Proceedings of the International Conference on New Interfaces for Musical Expression.
https://doi.org/10.5281/zenodo.1302599
Greenfield, G., & Machado, P. (2015).
Ant- and Ant-Colony-Inspired ALife Visual Art.
Artificial Life,
21(3), 293–306.
https://doi.org/10.1162/ARTL_a_00170
Jeon, M., Fiebrink, R., Edmonds, E. A., & Herath, D. (2019). From rituals to magic: Interactive art and HCI of the past, present, and future.
International Journal of Human-Computer Studies,
131, 108–119. https://doi.org/
https://doi.org/10.1016/j.ijhcs.2019.06.005
Jones, S. (2013-01-012013-01-01). Cybernetics in society and art.
Proceedings of the 19th International Symposium of Electronic Art.
http://hdl.handle.net/2123/9863
Licht, A. (2009). Sound art: Origins, development and ambiguities.
Organised Sound,
14(1), 3–10.
https://doi.org/10.1017/S1355771809000028
Magnusson, T. (2010).
Designing Constraints: Composing and Performing with Digital Musical Systems.
Computer Music Journal,
34(4), 62–73.
https://doi.org/10.1162/COMJ_a_00026
Martin, C. P., Glette, K., Nygaard, T. F., & Torresen, J. (2020). Understanding musical predictions with an embodied interface for musical machine learning.
Frontiers in Artificial Intelligence,
3, 6.
https://doi.org/10.3389/frai.2020.00006
Martin, C. P., Jensenius, A. R., & Torresen, J. (2018). Composing an ensemble standstill work for myo and bela.
Proceedings of the International Conference on New Interfaces for Musical Expression, 196–197.
https://doi.org/10.5281/zenodo.1302543
Martin, C. P., Liu, Z., Wang, Y., He, W., & Gardner, H. (2020). Sonic sculpture: Activating engagement with head-mounted augmented reality. In R. Michon & F. Schroeder (Eds.),
Proceedings of the international conference on new interfaces for musical expression (pp. 39–42). Birmingham City University.
https://www.nime.org/proceedings/2020/nime2020_paper8.pdf
Martin, C. P., & Torresen, J. (2020). Data driven analysis of tiny touchscreen performance with MicroJam.
Computer Music Journal,
43(4), 41–57.
https://doi.org/10.1162/COMJ_a_00536
Martin, C., & Lai, C.-H. (2011).
Strike on Stage: A percussion and media performance. In A. R. Jensenius, A. Tveit, R. I. Godoy, & D. Overholt (Eds.),
Proceedings of the international conference on new interfaces for musical expression (pp. 142–143).
https://doi.org/10.5281/zenodo.1178103
Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic books.
Proctor, R., & Martin, C. P. (2020). A laptop ensemble performance system using recurrent neural networks. In R. Michon & F. Schroeder (Eds.),
Proceedings of the international conference on new interfaces for musical expression (pp. 43–48). Birmingham City University.
https://www.nime.org/proceedings/2020/nime2020_paper9.pdf
Shneiderman, B. (2007). Creativity support tools: Accelerating discovery and innovation.
Communications of the ACM,
50(12), 20–32.
https://doi.org/10.1145/1323688.1323689
Shneiderman, B., Fischer, G., Czerwinski, M., Resnick, M., Myers, B., Candy, L., Edmonds, E., Eisenberg, M., Giaccardi, E., Hewett, T., Jennings, P., Kules, B., Nakakoji, K., Nunamaker, J., Pausch, R., Selker, T., Sylvan, E., & Terry, M. (2006). Creativity support tools: Report from a u.s. National science foundation sponsored workshop.
International Journal of Human-Computer Interaction,
20(2), 61–77.
https://doi.org/10.1207/s15327590ijhc2002_1
St-Onge, D., Reeves, N., Kroos, C., Hanafi, M., Herath, D., & Stelarc. (2011). The floating head experiment.
Proceedings of the 6th International Conference on Human-Robot Interaction, 395–396.
https://doi.org/10.1145/1957656.1957799
Wallace, B., Martin, C. P., Tørresen, J., & Nymoen, K. (2021). Learning embodied sound-motion mappings: Evaluating AI-generated dance improvisation.
Creativity and Cognition.
https://doi.org/10.1145/3450741.3465245
Zhang, Y., & Funk, M. (2021). Inspiration. In
Coding art: The four steps to creative programming with the processing language (pp. 195–200). Apress.
https://doi.org/10.1007/978-1-4842-6264-1_6